首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111151篇
  免费   19572篇
  国内免费   11871篇
化学   76045篇
晶体学   1387篇
力学   7312篇
综合类   683篇
数学   12994篇
物理学   44173篇
  2024年   116篇
  2023年   2236篇
  2022年   2459篇
  2021年   3618篇
  2020年   4657篇
  2019年   4524篇
  2018年   3854篇
  2017年   3630篇
  2016年   5554篇
  2015年   5317篇
  2014年   6509篇
  2013年   8480篇
  2012年   10259篇
  2011年   10808篇
  2010年   7258篇
  2009年   6912篇
  2008年   7402篇
  2007年   6690篇
  2006年   6090篇
  2005年   5057篇
  2004年   3773篇
  2003年   2896篇
  2002年   2457篇
  2001年   2087篇
  2000年   1811篇
  1999年   2099篇
  1998年   1869篇
  1997年   1728篇
  1996年   1896篇
  1995年   1550篇
  1994年   1500篇
  1993年   1206篇
  1992年   1099篇
  1991年   1024篇
  1990年   812篇
  1989年   591篇
  1988年   474篇
  1987年   392篇
  1986年   396篇
  1985年   330篇
  1984年   243篇
  1983年   156篇
  1982年   143篇
  1981年   108篇
  1980年   76篇
  1979年   44篇
  1978年   34篇
  1976年   38篇
  1975年   35篇
  1974年   46篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Atomically dispersed Fe was designed on TiO2 and explored as a Janus electrocatalyst for both nitrogen oxidation reaction (NOR) and nitrogen reduction reaction (NRR) in a two-electrode system. Pulsed electrochemical catalysis (PE) was firstly involved to inhibit the competitive hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Excitingly, an unanticipated yield of 7055.81 μmol h−1 g−1cat. and 12 868.33 μmol h−1 g−1cat. were obtained for NOR and NRR at 3.5 V, respectively, 44.94 times and 7.8 times increase in FE than the conventional constant voltage electrocatalytic method. Experiments and density functional theory (DFT) calculations revealed that the single-atom Fe could stabilize the oxygen vacancy, lower the energy barrier for the vital rupture of N≡N, and result in enhanced N2 fixation performance. More importantly, PE could effectively enhance the N2 supply by reducing competitive O2 and H2 agglomeration, inhibit the electrocatalytic by-product formation for longstanding *OOH and *H intermediates, and promote the non-electrocatalytic process of N2 activation.  相似文献   
992.
Journal of Solid State Electrochemistry - The high cost, CO poisoning, and slow electro-oxidation kinetics of Pt-based noble metal catalysts limit the merchandizing of direct methanol fuel cell....  相似文献   
993.
The electrochromic detection of latent fingermarks on polished or unpolished, flat or curved metal surfaces is described using electrochromic material, 1,1’-dibenzyl-4,4’-bipyridinium dichloride. The surface area covered by fingermarks acts as an insulating mask, causing 1,1’-dibenzyl-4,4’-bipyridinium dichloride to change color and produce inversed images of the fingermark. By changing the applied potential, the optical properties of 1,1’-dibenzyl-4,4’-bipyridinium dichloride can be continuously and reversibly adjusted to optimize the visual contrast of fingermarks, so as to realize the detection of latent fingermarks on stainless steel surface. It is demonstrated that the fabricated electrochromic devices can detect the fingermarks on these types of surfaces within twenty seconds at −1.0∼−2.0 V. This work can qualify as a tangible improvement in fingermark detection of the natural fingermarks on the never-cleaned (more than 3 years) and curved surfaces of daily-used container, e. g. cup, and the handle of cleaning tool, mop.  相似文献   
994.
In this study, a novel strategy to amplify electrochemical signals by mesoporous PdPt nanoparticles with core-shell structures anchored on a three-dimensional PANI@CNTs network as nanozyme labels (PdPt/PANI@CNTs) was proposed for the sensitive monitoring of α-fetoprotein (AFP, Ag). First, the mesoporous PdPt nanoparticles prepared by a facile chemical reduction method had excellent biocompatibility with biomolecules, which could capture a large amount of AFP-Ab2 (Ab2) and exhibit plentiful pores to entrap more thionine (Thi) into mesoporous PdPt nanoparticles with enhanced loading and abundant active sites. Furthermore, the resulting mesoporous PdPt nanoparticles were abundantly dotted on the surface of a three-dimensional PANI@CNTs network with excellent conductivity and a high specific surface area through the bonding of the amino group to form PdPt/PANI@CNTs nanozyme labels. Most importantly, the as-prepared PdPt/PANI@CNTs nanozyme labels exhibited unexpected enzyme-like activity towards the reduction of hydrogen peroxide owing to the highly indexed facets, enhancing the current response to realize signal amplification. In view of the advantages of nanozyme labels and the involvement of gold nanoparticles (AuNPs, which behave as electrode materials) for the sensitive determination of AFP, the as-developed immunosensor could obtain a dynamic working range of 0.001 ng mL−1–100.0 ng mL−1 at a detection limit of 0.33 pg mL−1 via DPV (at 3σ). Furthermore, the nanozyme-based electrochemical immunosensor exhibited remarkable analytical performance, which brought about feasible ideas for disease diagnosis in the future.  相似文献   
995.
Multivalent batteries show promising prospects for next-generation sustainable energy storage applications. Herein, we report a polytriphenylamine (PTPAn) composite cathode capable of highly reversible storage of tetrakis(hexafluoroisopropyloxy) borate [B(hfip)4] anions in both Magnesium (Mg) and calcium (Ca) battery systems. Spectroscopic and computational studies reveal the redox reaction mechanism of the PTPAn cathode material. The Mg and Ca cells exhibit a cell voltage >3 V, a high-power density of ∼∼3000 W kg−1 and a high-energy density of ∼∼300 Wh kg−1, respectively. Moreover, the combination of the PTPAn cathode with a calcium-tin (Ca−Sn) alloy anode could enable a long battery-life of 3000 cycles with a capacity retention of 60 %. The anion storage chemistry associated with dual-ion electrochemical concept demonstrates a new feasible pathway towards high-performance divalent ion batteries.  相似文献   
996.
Birefringent crystals could modulate the polarization of light and are widely used as polarizers, waveplates, optical isolators, etc. To date, commercial birefringent crystals have been exclusively limited to purely inorganic compounds such as α-BaB2O4 with birefringence of about 0.12. Herein, we report a new hydrogen bonded supramolecular framework, namely, Cd(H2C6N7O3)2⋅8 H2O, which exhibits exceptionally large birefringence up to about 0.60. To the best of our knowledge, the birefringence of Cd(H2C6N7O3)2⋅8 H2O is significantly larger than those of all commercial birefringent crystals and is the largest among hydrogen bonded supramolecular framework crystals. First-principles calculations and structural analyses reveal that the exceptional birefringence is mainly ascribed to strong covalent interactions within (H2C6N7O3) organic ligands and the perfect coplanarity between them. Given the rich structural diversity and tunability, hydrogen bonded supramolecular frameworks would offer unprecedented opportunities beyond the traditional purely inorganic oxides for birefringent crystals.  相似文献   
997.
The utilization of carbon resources stored in plastic polymers through chemical recycling and upcycling is a promising approach for mitigating plastic waste. However, most current methods for upcycling suffer from limited selectivity towards a specific valuable product, particularly when attempting full conversion of the plastic. We present a highly selective reaction route for transforming polylactic acid (PLA) into 1,2-propanediol utilizing a Zn-modified Cu catalyst. This reaction exhibits excellent reactivity (0.65 g gcat−1 h−1) and selectivity (99.5 %) towards 1,2-propanediol, and most importantly, can be performed in a solvent-free mode. Significantly, the overall solvent-free reaction is an atom-economical reaction with all the atoms in reactants (PLA and H2) fixed into the final product (1,2-propanediol), eliminating the need for a separation process. This method provides an innovative and economically viable solution for upgrading polyesters to produce high-purity products under mild conditions with optimal atom utilization.  相似文献   
998.
Rechargeable zinc metal batteries are promising for large-scale energy storage. However, their practical application is limited by harsh issues such as uncontrollable dendrite growth, low Coulombic efficiency, and poor temperature tolerance. Herein, a unique design strategy using γ-valerolactone-based electrolyte and nanocarbon-coated aluminum substrate was reported to solve the above problems. The electrolyte with extremely low freezing point and high thermal stability enables the symmetric cells with long cycle life over a wide temperature range (−50 °C to 80 °C) due to its ability to regulate zinc nucleation and preferential epitaxial growth. Besides, the nanocarbon-coated aluminum substrate can also promote a higher Coulombic efficiency over a wide temperature range in contrast to the low Coulombic efficiency of copper substrates with significant irreversible alloying reactions because this unique substrate with excellent chemical stabilization can homogenize the interfacial electron/ion distribution. The optimized zinc metal capacitors can operate stably under various temperature conditions (2000 cycles at 30 °C with 66 % depth of discharge and 1200 cycles at 80 °C with 50 % depth of discharge). This unique electrolyte and substrate design strategy achieves a robust zinc metal battery over a wide temperature range.  相似文献   
999.
Synthesis of cyclohexanone oxime via the cyclohexanone-hydroxylamine process is widespread in the caprolactam industry, which is an upstream industry for nylon-6 production. However, there are two shortcomings in this process, harsh reaction conditions and the potential danger posed by explosive hydroxylamine. In this study, we presented a direct electrosynthesis of cyclohexanone oxime using nitrogen oxides and cyclohexanone, which eliminated the usage of hydroxylamine and demonstrated a green production of caprolactam. With the Fe electrocatalysts, a production rate of 55.9 g h−1 gcat−1 can be achieved in a flow cell with almost 100 % yield of cyclohexanone oxime. The high efficiency was attributed to their ability of accumulating adsorbed hydroxylamine and cyclohexanone. This study provides a theoretical basis for electrocatalyst design for C−N coupling reactions and illuminates the tantalizing possibility to upgrade the caprolactam industry towards safety and sustainability.  相似文献   
1000.
Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium-modified carbon-supported cobalt (K+−Co−C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus-pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+−Co−C catalyst shows a record-high photothermal CO2 hydrogenation rate of 758 mmol gcat−1 h−1 (2871 mmol gCo−1 h−1) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号